
1

Wireless Web Services using Mobile Agents
and Ontologies

Vasileios Baousis, Elias Zavitsanos, Vasileios Spiliopoulos,

Stathes Hadjiefthymiades, Lazaros Merakos, Giannis Veronis

University of Athens, Department of Informatics & Telecommunications,
Communication Networks Laboratory, Panepistimioupolis, Ilisia, 157 84 Athens, Greece.

e-mails: {bbaous| std00025|std00108| shadj|merakos|std00024}@di.uoa.gr
Tel: +30 2107275425 / Fax: +30 2107275601

Abstract--We discuss the integration of two contemporary ser-

vice technologies: Web Services and Mobile Agents. We exploit
the capabilities offered by Mobile Agents to query and invoke
semantically enriched Web Services without the need for simul-
taneous, online presence of the service requestor. Such service
setting is ideal for wireless/mobile computing, where user termi-
nals are not necessarily online during their entire session. To
improve the capabilities of Service registries met in the Web Ser-
vices reference architecture, we exploit the advantages of the
Semantic Web framework. Specifically, we use enhanced regis-
tries enriched with semantic information that provide semantic
matching to service queries and published service descriptions.

Index Terms- Mobile agents, Ontologies, OWL-S, Semantic

Web services.

I. INTRODUCTION
Nowadays the ability to access services and obtain informa-

tion anywhere and anytime, irrespective of the network and
terminal, is imperative to meet users’ requirements. However,
most of the services available on the Web are designed to be
accessed from desktop PCs, with a fixed, low error connection
to the network. The main pursuit of most research efforts is to
extend current services and applications designed for fixed
networks to mobile users in a seamless and transparent way.
This task is cumbersome given the problems encountered
when using a hand-held device to access such services. Scarce
bandwidth availability, temporary disconnections, high la-
tency, limited battery and constrained processing capabilities
are often met in wireless environments.

Web Services (WS) are designed for fixed networks. WS
provide a loosely coupled infrastructure for service descrip-
tion, discovery and execution. In the traditional WS model,
service requestors find the appropriate service by placing a
request to the service registry, often implemented with UDDI
(Universal Description, Discovery and Integration), obtain the
result(s) - public interfaces of the chosen service(s) (expressed
in WSDL - Web Services Description Language) and, finally,
send SOAP (Simple Object Access Protocol) messages to WS
provider(s).

The main problems experienced in these interactions are:
• UDDI guarantees syntactic interoperability, and it

does not provide a semantic description of its content. UDDI

is characterised for its lack of semantic description mecha-
nisms, such as semantic interoperability, explicit semantic
models to understand the queries and inference capabilities.
UDDI service discovery is performed primarily by service
name (keyword matching), not by service attrib-
utes/capabilities. UDDI tModels may be regarded as a vo-
cabulary where service descriptions are unstructured and in-
tended for human comprehension. Different services with
the same capabilities can, thus, be categorized in different
business categories.
• SOAP messages overhead is often greater than the

service parameters/results exchanged between communicat-
ing parties.
• WSDL is XML-based and used to specify the inter-

face of a WS. It describes what information is exchanged
(structure of the SOAP messages), how that information is
exchanged via interactions with the WS (transport protocols)
and where the service is located. However, WSDL does not
contain any information about the capabilities of the de-
scribed service.

Several efforts have been made to address the lack of ex-

pressiveness in WSDL in terms of semantic description that
fall into the area of the Semantic Web (SW). SW is a vision
[1] in which web pages are augmented with semantic informa-
tion and data expressed in an unambiguous manner and can be
understood and interpreted by machine applications and hu-
mans alike. This requires means to represent the semantics of
the exchanged data so that it could be automatically processed.
This requirement is met with the use of ontologies. Ontologies
facilitate knowledge sharing among heterogeneous systems,
through explicit formal specifications of the terms used in a
knowledge domain and relations among them [2]. Ontologies
are machine-understandable and, as such, a computer can
process data, annotated with references to ontologies. Through
the knowledge encapsulated in the ontology, a computer can
deduce facts from the originally provided data. The use of
ontologies enables systems to share common understanding of
the structure of information and reuse of domain knowledge,
make domain assumptions explicit and separate domain
knowledge from the operational knowledge.

2

OWL-S (Web Ontology Language) [3] is a SW description
language for defining and instantiating Web ontologies. An
OWL-S ontology implicitly defines message types (as in-
put/output types of processes) in terms of OWL classes, which
allows for a richer, class-hierarchical semantic foundation.
With OWL-S, WS are described in an unambiguous manner
allowing for a potential service requestor to place a capability
search in a service registry rather than a keyword search in
UDDI registries.

In this paper, we propose the integration of Mobile Agent
(MA) technology with WS that are expressed in OWL-S. A
MA has the unique ability to autonomously transport itself
from one system to another. The ability to travel allows a MA
to move to a system that contains an entity (-ies) with which
the agent wishes to interact and take advantage of being in the
same host or network with the collaborating entity. MA oper-
ate asynchronously and are equipped with the appropriate in-
telligence to dynamically accomplish their task. MA are not
trying to replace traditional ways of communication but to
enhance the functionality and operation of the involved ser-
vice entities. Researchers agree that MAs are not always the
best solution and a combination of the MA, client-server and
remote execution paradigms delivers the best performance
with respect to network operation metrics like bandwidth, re-
sponse time, and scalability.

This paper introduces a novel framework for dynamic dis-
covery and integration of semantically enriched WS with MA.
Specifically, the proposed framework is mostly intended for
wireless environments where users access WS in the fixed
network. The system uses an enhanced WS registry enriched
with semantic information that provides semantic matching to
incoming service queries and the published WS descriptions.
The framework enhances the fixed network with the intelli-
gence needed in order to dispatch the service requests of the
wireless user in an efficient, reliable and transparent manner.
Furthermore, as shown in the performance evaluation section,
the MA framework can be quantitatively compared with sys-
tems implemented without MA. However, our objective is not
to outperform the existing systems, but rather provide a
framework that solves the problems encountered in wireless
environments. The proposed approach enables users to exe-
cute multiple services with minimum interaction, without the
requirement of being online during the entire session. Addi-
tionally, the proposed framework provides better fixed net-
work utilization since unnecessary communication overhead is
avoided and reliable delivery of the service results is provided.

The rest of this paper is structured as follows. In Section II
we discuss relevant prior work. In Section III, we present an
overview of the proposed architecture. In Section IV, we study
the performance of the proposed framework and in Section V
we discuss our findings. Finally, conclusions and directions
for further work are included in Section VI.

II. RELATED WORK

In this section, we provide an overview of the related work
performed in the areas of semantic WS and multi-agent sys-

tems and, especially, on research activities that integrate these
two technologies.

In [4] [5] BPEL (Business Process Execution Language) is
used to form simple rules to describe MA physical behaviour
(e.g., migration and cloning). Such simple rules are separated
from the integration logic, allowing for addition or change of
physical behaviour without modification of the BPEL descrip-
tion. A MA is composed of three parts of descriptions: (1) a
BPEL process description expresses the integration logic (2)
behaviour rule descriptions that drive the physical behaviour
of the agent, and, (3) packed services that are carried by the
agent and invoked locally by BPEL process. The separation of
the agent’s physical behaviour from integration logic is con-
sidered helpful in dealing with the dynamic environment of
WS, however, the discussed framework supports actions only
in case of predefined events. Such events are agent migration
failures, agent cloning and task allocation to agent clones. The
implemented rules do not consider dynamic events that might
be generated during WS invocation and MA roaming. More-
over, directory services and multicast protocols are assumed
pre-existing. Finally, the system has not been implemented
yet, hence benchmarking is not possible.

In [6], the authors present a technique for providing agents
with dynamically configured capabilities, described with
DAML-S, which can represent atomic or orchestrated WS.
According to this technique, MA implemented in LEAP reside
in mobile devices and obtain the descriptions of the WS they
wish to invoke from a repository server. Such descriptions are
then forwarded to the Home Server where they are trans-
formed to executable programs and results are communicated
back to the MA through JXTA.

There are several proposed models that adopt BPEL4WS
(Business Process Execution Language for Web Services) as a
specification language for expressing the social behaviour of
multiagent systems and adapt to changing environment condi-
tions [7], [8]. However, these models do not provide for the
semantic description of the WS involved in the system. Other
proposed frameworks adopt DAML-S for describing the WS,
thus, allowing for service capability search and matching
[14],[15]. However, they do not provide any mechanism for
combining these services.

In [10], [11] the authors propose a policy based framework
for flexible management and dynamic configurability of agent
mobility behaviour in order to reduce code mobility concerns
and support rapid mobile code-based service provisioning.
Policies specify when, where, how and the parts of the agent
that will perform a given task (e.g., migrating to a host and
invoke a service).

In [9], the authors suggest a model that provides the WS
client runtime information pertinent to its execution and busi-
ness logic. The client decides autonomously to bind to the best
service that currently meets his requirements (such as server
load, QoS, response time, etc). Two mechanisms are consid-
ered to gather this information: Remote Procedure Call (RPC)
and MAs. The concept of the circulating agent is also intro-
duced (i.e., to periodically travel through the network and re-
trieve updated information). This approach provides better

3

response times and exhibits improved behaviour in wireless
environments.

An agent based approach for composite mobile WS is pro-
posed in [12], where three methods for compositions are dis-
cussed: parallel, sequential and a hybrid of these two. The
service composition scenario is that a user with a wireless de-
vice places a request to execute a WS and a MA executes the
service on the behalf of the user by moving to the service reg-
istry, query the registry, get service description (in WSDL),
and finally invoke the service. Service execution, depending
on the WS itself, is performed with one of the aforementioned
composition methods. This approach does not consider seman-
tic information describing the involved WS, thus, services are
selected by simple keyword queries to the UDDI registry. Ad-
ditionally, it does not include mechanisms to decide which
composition approach to follow. Integration depends upon the
nature of the WS (if the service is a composition of other ser-
vices it must be accessed sequentially, if not, then in parallel).
A similar approach is proposed in [13], with the difference
that a personal and a service agent are used to perform the task
of the MA described in the previously mentioned approach.

III. FRAMEWORK ARCHITECTURE

Figure 1 depicts a general outline of our approach. The pro-
posed framework consists of the mobile user that uses WS, the
MA representing the user in the fixed network, the service
registry and the WS provider. The last two entities may be
implemented as stationary agents. According to the service
implementation scenario, a mobile user accesses the proposed
system and places service requests specifying some criteria.
Subsequently, the system creates a MA that migrates to the
registry to find the WS that best meets the user requirements.
Service registry allows for a capability search to be performed,
since it is enriched with semantic information. The MA, after
acquiring the WS listing and technical details, migrates to ser-
vice provider(s), invokes the WS, collects the results and re-
turns to the service requestor to deliver the results to the user.

The route of the agent may vary, depending on the service
requestor preferences and the network topology. As explained
below, the user may dynamically force his MA to send its
clones to the providers, invoking the services in parallel, rather
than serially migrate to each one. Moreover the user may force
the MA to implement different service execution strategies
(e.g., execute all services locally or remotely, change timeout
limit), during its itinerary and execution of service(s).

Our framework consists of the following functional compo-
nents: (1) User Service Requestor (USR) and the Client Sys-
tem, (2) Mobile Agent (3) Provider Stationary Agent (PSA),
(4) Registry Stationary Agent (RSA), (5) Semantic Web Ser-
vices Registry (SWSR) (6) Web Service Provider (WSP).
Their structure and functionalities are described below. In the
end of this section we provide a service implementation sce-
nario, presenting all possible supported service invocation
alternatives.

A. User Service Requestor (USR)
USR is the client that invokes a WS. USR logs into the Cli-

ent System, which communicates with the agent platform us-
ing IIOP. The agent platform is responsible for creating and
handling MA, according to user specifications. The Client
System is implemented in JSP/Servlet technology, and many
users can be accommodated without having java runtime envi-
ronment (JRE) or the MA platform (MAP) installed on their
device. The only requirement is a browser to access the Client
System. The Client System offers services to clients like: ac-
count creation, user login/logout, service invocation policies
profile editing, and control of existing agents. Moreover, the
administrator is allowed to add/remove/edit user proper-
ties/profiles. Finally, users’ service invocation policy profiles
are serialised and stored into the server’s database that enables
the seamless and transparent provision of services.

Transport medium

SWSR

Published services

WSP

WSP

Client System

Laptop
Users

MA creation

MA gets a list
 of Web services MA executes the WS

MA executes the WS

WSP

MA executes the WS

MA brings the service results

USR

PSA

RSA

USR

PSA

Figure 1: Framework Architecture

B. Mobile Agent (MA)
The MA is the representative of the user in the fixed net-

work and is capable of roaming, finding and executing ser-
vices and delivering results to the user. The MA may also
spawn clones that execute the selected WS in parallel to
minimize the total processing time. Clones can migrate and
invoke simultaneously the chosen WS and return to the service
requestor with the results. The MA has the following compo-
nents: (1) data state, (2) code, (3) migration and cloning poli-
cies, (4) matching engine, and, (5) policy management com-
ponent (Figure 2).

The data state component contains the information carried
by the MA during migrations. The policies component speci-
fies the autonomous behaviour of the MA. It should be noted
that the social behaviour of the MA (migration, cloning) is
separated from integration logic and code implementation.
This separation is accomplished with user’s specified invoca-
tion policies that govern the behaviour of MA, being external
and independent of its code and integration with the WS. The
policy management component is responsible for the MA ex-
ternal communication and the transparent installation of poli-
cies into the agent’s repository.

4

Mobile Agent

CODE

DATA

Migration &
Cloning
Policies

S
E
C
U
R
I
T
Y

Matching
Engine

Policy Management

Client System

Creates and loads
policies

MA Structure

Mobile Agent Platform

Figure 2: Mobile Agent Structure

As shown in Figure 3, the policy management component

provides four services, namely communication, trigger, speci-
fication and policy repository. Specifically, the communica-
tion service enables the MA to interact with the client and
other network entities. Such functionality is accomplished
through the monitoring service which filters the messages
coming from the client system and through the event service
which handles events concerning policy changes. When a pol-
icy change occurs, trigger service is notified to update the pol-
icy repository. Specification service is responsible for fulfill-
ing this task. Finally, the matching engine component is re-
sponsible for post-processing the service registry query re-
sults, i.e. confirm the availability of the service providers prior
to agent migration.

Mobile Agent

Policy Management Component

Monitoring
Service

Event
Service

Communication Service

Trigger
Service

Specification
Service

Policy Repository

Figure 3: MA Policy Management Component

As mentioned above, the agent's policies determine its

physical behaviour while roaming in the network and execut-
ing WS. Currently, the MA considers the policies (some of
them described in Table I), which are Boolean (marked B) and
numerical variables (marked N). Agent policies are expressed
in XML and stored in a serialised format into the Client Sys-
tem database. For each registered user there is an associated
policies file, to provide personalized WS access.

Table I: Policy names and their respective meaning

Policy name Description
<Migrating>
and <cloning>

MA's ability to migrate to another host and
spawn clones respectively. (B).

<retryTimes> The number of attempts that the MA will
perform when a WS is unavailable. (N)

<timeBetween-
Reattempts>

The time that MA will wait between con-
secutive reattempts. (N).

<suspend-
WhenFinished>

States if the user wishes (dis)-connected
operation. (B).

<maxNum-
berOfHits>

The maximum number of services to be
invoked. (N)

<minNum-
berOfResults>

The minimum number of results when que-
rying the semantically enriched registry.
(N)

<pingServer> MA will check if the targeted service pro-
vider is alive, before its migration.(B)

<migrate-
ToServer>

Specifies if the service will be invoked
locally or remotely. (B).

<remoteCall> MA invokes the chosen WS using
SOAP/RPC (remotely from other host)
without migrating to each provider. (B).

<callThrough-
Stationary>

Indicates if communication between WS
and MA will take place with or without the
Provider's Stationary Agent (PSA). (B))

<clone-
ToServer>

Allows the MA either to serially migrate to
each service provider or sent clones to ac-
complish the task in parallel. (B).

C. Provider Stationary Agent (PSA)
PSA is a stationary agent that resides in the host offering a

certain WS. The purpose of the PSA is to wrap the functional-
ity of the WS. The PSA communicates with the service pro-
viders through protocols specified for WS invocation and in-
teraction (e.g., SOAP). When the MA migrates to a host offer-
ing a WS with a PSA, it obtains the results through the PSA.
This communication is performed with RMI (Remote Method
Invocation), instead of the resource-consuming SOAP. With
this approach, the MA need not be SOAP fluent, thus, leading
to a lightweight implementation. Figure 4 presents the PSA
structure. The PSA interface exposes the available methods of
the WS as they are described in OWL-S. PSA consists of two
parts: (1) its data state, and, (2) its code. PSA methods are
multi-threaded to accommodate and simultaneously serve
multiple MAs.

D. Registry Stationary Agent (RSA)
RSA is a stationary agent that acts as a broker between the

MA and the service registry (Figure 5). RSA implements part
of the registry’s functionality and serves MA’s requests. By
using RSA in the WS registry, the MA does not have to be
aware of the implementation specific functionalities of the
registry, and, as such, different service registries can be used
as long as RSA acts between WS registry and MA. The pro-
posed framework can be used with many different registries
that are currently available.

5

Web Service ProviderWeb Service Provider

PSA structure

Exposed
MethodsDATA CODE

Security

Exposed
MethodsDATA CODE

Security

Mobile Agent Platform

Mobile AgentMobile Agent Provider Stationary AgentProvider Stationary Agent

Web Service
Protocols

Figure 4: Provider Stationary Agent Logic

E. Semantic Web Services Registry (SWSR)
The SWSR (Figure 5) consists of the RSA, the matchmak-

ing tool and the UDDI registry. The matchmaker [16] is a tool
which enhances the UDDI server by adding capability-based
discovery. In combination with Racer [20], it processes the
OWL ontologies. Service advertisements are first processed
by the UDDI server and, if any semantic information is con-
tained in them, they are passed to the OWL-S matchmaking
engine. Finally, the engine processes service queries and re-
turns the results to the UDDI server, which in turn, communi-
cates with the requesting service client.

Matchmaker tool

Racer

UDDI

Mobile Agent Platform

Mobile AgentMobile Agent Registry Stationary AgentRegistry Stationary Agent

Figure 5: Semantic WS Registry

Matchmaker is a tool that integrates seamlessly with regis-
tries such as UDDI. In our system we used a local implemen-
tation of UDDI, called JUDDI [21]. JUDDI is a web applica-
tion for Apache Tomcat that has the ability to deploy the func-
tionality of the classic UDDI locally. The matchmaker tool is
responsible for the mapping of the OWL-S service description
to JUDDI. Matchmaker is plugged in JUDDI and is available
in two versions, a Web-based and a standalone version. The
standalone version provides a matching engine and a client
API for invoking this engine. An extensive description of
matchmaker can be found in [17][18][19].

F. Web Service Provider (WSP)
The WSP provides the WS to interested clients. It maintains

a description of the WS expressed in WSDL and OWL-S
(Web Ontology Language). Figure 6 depicts the WSP and
their supported functionalities. Service invocation by the MA
depends on the OWL-S description of the service. In our
framework, service invocation by MA can be performed either
directly or through the PSA. In the direct access case, the
agent has to be SOAP fluent, a fact that increases the size of
the MA when moving over the network. Inside the OWL-S
description of the WS, it is indicated if a PSA wraps the func-
tionality of the service to allow the roaming MA to interact
with the PSA instead of the service.

As mentioned above, OWL-S is used to enhance the expres-
siveness of WSDL in terms of semantic information. For this
reason, in our framework, WS are described both in WSDL
and OWL-S. WSDL is used to describe the technical details
(Service grounding) and OWL-S is used to specify the input
and output ontologies, thus, enabling an advanced service ca-
pability search (Service profile and model). When the desired
service is retrieved from the registry, the WSDL description is
used to find the necessary definitions for its successful invoca-
tion.

As already mentioned, the WS provider can expose a PSA
to act as his delegate and interact with the user’s MA. This is
revealed to the MA through the OWL-S description. If this is
not the case, the MA infers that no PSA is offered and the ser-
vice should be accessed directly.

Also supports
Remote invocations

Web Service Provider

M
ay

 b
e

re
pr

es
en

te
d

by

PSA

<…..>
WSDL
Service

Description
</…>

<…..>
OWL-S
Service

Description
</…>

<…..>
WSDL
Service

Description
</…>

<…..>
OWL-S
Service

Description
</…>

Supports bothSupports both

Mobile Agent Platform

Web Service
Protocols

Web Service
Protocols

Figure 6: Web Service Provider

G. Service Description
In this section we provide a functional description of our

framework, using a service scenario. As shown in the use case
view (Figure 7), the USR wishes to find and invoke a certain
WS, using a mobile device. Therefore, he connects to the Cli-
ent System, the platform front-end. After a successful registra-
tion, the USR sets the desired criteria for the WS. The user
may also define the MA service invocation policies and force
the latter to follow a certain policy while roaming throughout

6

the network. Subsequently, a MA is created to represent the
user in the fixed network and dispatch his service requests.

The created MA is equipped with the user’s unique ID, ser-
vice invocation and agent behavioural policies. Such policies
are passed to the MA in XML format and stored into his pol-
icy repository. The trigger service has the authority to change
these policies, according to the messages that the event service
may receive from the USR or other network entities.

"includes"

"includes""includes"

Connection failure

Return to the Client
System

Creation of Mobile Agent

User Service
Requestor (USR)

See the results

Login/Logout

Client
System

Insert specifications about
the desired WSConnect to the

 system

Administer user profiles

Administrator

Figure 7 Use Case 1 : USR perspective

The SWSR (Figure 8) provides WS descriptions and allows
service capability search. The MA, after creation, migrates to
the SWSR. When the MA arrives at the registry, it communi-
cates with the RSA, which will query the registry on behalf of
the MA. The latter finds the service(s) that meet the user
needs. The MA, after acquiring the results decides on the next
step according to its specified service invocation and agent
behavioural policies.

Return ResultSet Offers WS advertisements

Semantic Web Services
Registry (SWSR)

Figure 8: Use Case 2: SWSR perspective

The MA (Figure 9) may follow several WS invocation al-
ternatives and these are listed below:

1. May poll the servers where the services are located to
check their availability, in order to migrate only to those
that are alive. In this way, the MA is released from the
burden of migrating to a malfunctioning remote server.
This strategy improves the overall performance of the
framework, by avoiding unnecessary migrations.

2. May try to invoke the services from remote and not
migrate to the provider. Remote invocation or migration of
MA is specified in the MA policies. Specifically, depend-
ing on the size of the MA or the distance between its cur-

rent location and the provider, it may be preferable not to
migrate, but remotely invoke the WS.

3. May migrate to the WSP and collaborate with the
PSA. The MA invokes the service and obtains the results
through the PSA.

4. May migrate to the WSP and directly invoke the WS.
This option requires the MA to carry additional code li-
braries. The implementation of the WSP is much simpler
and straightforward, since there is no change in the tradi-
tional WS implementation model.

5. Finally, the MA may send clones to each WSP, in-
stead of migrating serially to each one. This scenario re-
sults to a parallel invocation of the WS, with each MA
clone to invoke one WS. In this way, the overall service
invocation time is reduced, as expected, in comparison to
the previous service invocation alternatives.

All these service invocation alternatives are decided at run-

time, according to the user’s specified service invocation and
agent behavioural policies. When the MA(s) have collected
the results, there are two scenarios depending on the selected
policies:

1. When the MA invokes all the services, it migrates
back to the Client System. If the user is logged in the sys-
tem, the MA passes the results to the user, and, if the user
is not logged in then the MA waits for the user to login and
ask for the service results.

2. When clones had been used for service invocation,
the MA clones return to the Client System and deliver ser-
vice results to the father MA. After this interaction, MA
clones are destroyed. The father MA, as in the previous
case, delivers the services results to the user.

When the USR obtains the results, he may ask the MA to

repeat one of the above scenarios by changing, if necessary, its
policies, or he may cancel the execution of the agent. The
USR may also, at any time, search for the agent, instruct him
to return or cancel its execution at runtime.

"extends"

"includes" "includes"

"extends"

Check user's
Specifications

Return to the Client
System

Make optimized match
from selected WSs

Migration to Registry

Query the Registry

Remote Invocation of WS

Mobile Agent

Invocation of WS

Migration to Provider's
Host

Communication

Publishes the W.S. Provides the W.S.

Provider's Stationary
Agent (PSA)

Web Service
Provider (WSP)

"extends"

Figure 9 : Use Case 3: MA perspective

7

IV. PERFORMANCE EVALUATION
In this section we discuss the performance evaluation of the

proposed system. Specifically, we compare the performance
for different configurations settings, against the traditional
business model of WS provision. In the following description,
the term “conventional WS business model”, refers to the
model where a user requests a service to be executed and the
system dispatches (either automatically or with user interven-
tion) the request by discovering the appropriate service(s)
from the service registry, and then, sequentially, invokes these
WS, receives and forwards/presents to the user the service
results. Communication between the involved network entities
is performed with SOAP. This model is a direct implementa-
tion of the WS architecture as described in [22]. Moreover, in
our framework, mobile agents were implemented on the
Grasshopper platform [23].

We have developed and tested the following four system
variants:

a. A WS system implemented with the “Conventional
WS Business Model” (WSBM).

b. Our MA framework with stationary agents in Service
registry and Service providers - (WITH PSA.)

c. Our MA framework without stationary agents in Ser-
vice registry and Service providers - (NO PSA.)

d. A hybrid system, where some Service Providers ac-
commodate a Stationary agent, while others do not (Hy-
brid.)

The WS logic implemented in our experiments is quite sim-

ple. The WS have an extensive service description, stating
unambiguously their capabilities in OWL-S. Such description
is published in the registry (SWSR). However, the WS func-
tionality is fairly simple, returning a pre-specified data volume
subject to the service request. In our trials, service results are 1
KB, 10 KB, 100KB and 1 MB. Moreover, we have imple-
mented 6 WS and distributed them in our testing network.

Figure 10: Performance evaluation network topology

In the performance evaluation run, a user requests a service,
specifies some preferences and each of the above four systems
dispatches this request. Furthermore, the service registry in
each service request, replies with the same number of services
(6). With this approach, each user request results to all the 6
WS to be executed in the same sequence.

The testing platform that we used is depicted in Figure 10.
The system is a LAN composed of two workstations and a
portable PC, all connected to the Internet through the Univer-
sity’s MAN. We measured the time of MA migration from one
Service Provider to another and the interaction time of the MA
with each service. In the “Conventional WS business model”
we measured only the interaction service time (service registry
query and service request and result times).

Below, we elaborate on the metrics that we have adopted in
order to assess the performance of the system (variants). In
Equation (1), Total Service Time (TSTMA) (for the MA plat-
form) is the sum of Registry Interaction Time (RIT), Migration
of MA to the i-th Service Provider Time (MSPTi) and the In-
teraction Time with the i-th Service Provider (ITSPi):

∑
=

++=
N

i
iiMA ITSPMSPTRITTST

1

)((1)

where N is the number of WS that are executed in the itin-

erary of the MA (6 in our tests). In the WSBM system, Equa-
tion (1) takes the form:

∑
=

+=
N

i
iITSPRITTST

1
WSBM (2)

 In (2) ITSPi is the time between service request submission

and service results reception.

V. PERFORMANCE EVALUATION RESULTS

In Figure 11 we plot the migration time of the MA from one
WS provider to another, against the service result size with the
help of 2nd order polynomial interpolation lines. The line la-
belled “With PSA” indicates that WS results are delivered
through the PSA. The line labelled “NO PSA”, means that no
such agents are provided. Finally, the line “Hybrid” denotes
the case where some providers are equipped with PSAs while
others are not. We can observe, from Figure 11, MA in the
“With PSA” system have constantly less migration time from
the hybrid system and the latter has constantly less migration
time from the “No PSA” system. Moreover, we observe that
as the size of the service results increases the previously stated
difference becomes more obvious, and the “With PSA” system
performs better than the other systems. The MA migration
behaviour of these systems can be justified because in the
“With PSA” system the MA agent does not have to be SOAP
fluent which means that it does have to carry extra code in
order to support such communication. In “With PSA” system
the MA is “lighter” than in the other two systems while the
MA has to be equipped with extra libraries in order to ex-
change SOAP messages.

8

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000
Service results size (KB)

M
ig

ra
tio

n
tim

e
(m

se
c)

Poly. (WITH PSA)
Poly. (NO PSA)

Poly. (HYBRID)

1

3
2

1

3

2

Figure 11: Migration Times vs. Service result size

In Figure 12, we plot the Interaction Time of the MA with

the Service Provider (ITSP) against the service result size
(presented through 2nd order polynomial fitting lines). The CL
(Cloning) means that the MA that roams in the fixed network
instead of invoking sequentially the WS, sends its clones to
invoke each WS (parallel service invocation).

We notice that the WSBM system demonstrates smaller in-
teraction time in all cases, and follows the “With PSA”, the
“Hybrid” and, finally, the “No PSA” system. Next, with
poorer performance, follow the aforementioned three systems
with CL enabled. The ITSP is relatively high in cases where
cloning is enabled. This can be attributed to the small number
of service providers used in our tests. With agent cloning the
platform is saturated by the additional clones, thus resulting to
considerable performance degradation.

Moreover, the system having stationary agents (PSA) to en-
capsulate the WS functionality, communicate faster with the
MA than the system where the MA communicates through
SOAP. The better inter-agent communication is attributed to
the Grasshopper platform, where agents communicate with
synchronous inter-agent message passing.

0

2000

4000

6000

8000

10000

12000

14000

1 10 100 1000
Service results size (KB)

In
te

ra
ct

io
n

tim
e

(m
se

c)

Poly. (WITH PSA)

Poly. (NO PSA)

Poly. (HYBRID)

Poly. (WSBM)

Poly. (WITH PSA (CL))

Poly. (NO PSA (CL))

Poly. (HYBRID (CL))

1

6

5

7

6
5

4

3
2

7

1

4

3

2

Figure 12: ITSP vs. Service result size

Finally, in Figure 13, we plot the Total Service Time (TST)
against the service result size. We observe that, apart from the
WSBM system that shows the lowest TST, the system with the
smallest service time is that having PSA and MA cloning en-

abled (service execution in parallel). We notice that the MA
cloning increases the interaction time between the MA and the
WS but, eventually, entails considerable improvement to the
system, due to the fact that WS are executed in parallel
whereas in cases where the MA cloning is not used the WS are
executed sequentially.

0

5

10

15

20

25

30

35

1 10 100 1000
Service results size (KB)

To
ta

l S
er

vi
ce

 T
im

e
(s

ec
)

Poly. (WITH PSA)

Poly. (NO PSA)

Poly. (HYBRID)

Poly. (WSBM)

Poly. (WITH PSA+CL)

Poly. (NO PSA+CL)

Poly. (HYBRID+CL)

1

4

5

7

2

3

6

1

7
6

5
4

3

2

Figure 13. Total Service Time (TST) vs. Service result size

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a framework that provides wire-
less access to WS using MA to find and execute WS in the
fixed segment. The WS are semantically enriched and are ex-
pressed in OWL-S. Furthermore, the proposed system adopts
an enhanced WS registry enriched with semantic information
that provides semantic matching between service requests
submitted and the service description published to them. The
advantages of the system are: (1) Users may invoke a set of
services with only one interaction with the fixed network (post
the request and receive the results), (2) Users do not have to be
connected during the service discovery and invocation and the
results are downloaded to mobile devices after their network
session re-establishment, (3) Service invocations are per-
formed locally or according to the user’s specified policies,
and unnecessary information is not transmitted over the net-
work leading to better resource utilization, (4) the framework
ensures the delivery of the service results to the user, (5) the
MA dynamic behaviour improves system robustness and fault
tolerance, (6) New services, agents, users and service regis-
tries can be easily integrated to the framework thus providing
an expandable, open system.

Future work includes the study of agent mobility. We have
already designed a MA infrastructure that takes network
events into account. Network events (e.g., node failures) oc-
curring while the service invocation is underway, may force
the MA to dynamically reschedule its itinerary accordingly.
The MA will implement routing algorithms that generate itin-
eraries by considering network information published in the
WS description, network status and topology. Presently, we
plan to integrate our framework with SNMP agents to report
network monitoring events and develop the necessary agent
infrastructure.

9

REFERENCES
[1] Tim Berners-Lee, James Hendler, Ora Lassila “The Semantic Web”

Scientific American 2001
[2] Gruber“A Translation Approach to Portable Ontology Specifica-

tion”Knowledge Acquisition 5, 1993
[3] http://www.daml.org/servcies/owl-s/
[4] Fuyuki Ishikawa, et al “Mobile Agent System for Web Services Inte-

gration in Pervasive Networks”, (IWUC 2004), pp.38--47, April, 2004
[5] Fuyuki Ishikawa, et al, “Behavior Descriptions of Mobile Agents for

Web Services Integration”, ICWS 2004, pp.342--349, July, 2004
[6] Paul A. Buhler, Jose M. Vidal. “Semantic Web Services as Agent Be-

haviours” In B. Burg et al., editors, Agentcities: Challenges in Open
Agent Environments, pages 25-31. Springer-Verlag, 2003.

[7] Paul A. Buhler, Jose M. Vidal “Enacting BPEL4WS specified work-
flows with multiagent systems”. Proceedings of the Workshop on Web
Services and Agent-Based Engineering, 2004

[8] Paul A. Buhler, et al “Adaptive Workflow = Web services + Agents”.
International Conference on Web Services, pages 131-137. CSREA
Press, 2003

[9] Amir Padovitz, et al “Towards Efficient Selection of Web Services.”
WSABE2003 Australia 7/2003

[10] Rebecca Montanari et al “A Policy-based Mobile Agent Infrastructure.”
SAINT'03, 2003: p.370-379

[11] Rebecca Montanari, et al “Policy-based Separation of Concerns for
Dynamic Code Mobility Management.” COMPSAC’03

[12] Wassam Zahreddine, Qusay H. Mahmoud “An agent-based approach to
composite mobile web services” AINA05 p185-188.

[13] Sheng-Tzong Cheng et al “A new framework for Mobile Web Ser-
vices” (SAINT’02w).

[14] Nicholas Gibbins, et al “Agent based Semantic Web services” Journal
of Web Semantics, 2004.

[15] Lagana Kagal et al “Agents making sense of the semantic web”,
WRAC 2002, USA, January 16-18,

[16] Matchmaker :http://www.daml.ri.cmu.edu/ matchmaker/
[17] Katia Sycara, et al. “Automated discovery, interaction and composition

of semantic web services”. Journal of Web Semantics, July 2004.
[18] Massimo Paolucci, et al. “Semantic matching of Web services Capa-

bilities” International Semantic Web Conference 2002: 333-347.
[19] Naveen Srinivasan, et al. “Adding OWL-S to UDDI, implementation

and throughput”, SWSWPC 2004
[20] RACER: www.racer-systems.com
[21] JUDDI: http://ws.apache.org/juddi/
[22] Web service Architecture : http://www.w3.org/TR/ 2004/NOTE-ws-

arch-20040211/
[23] Grasshopper: http://www.grasshopper.de (last accessed 10/2003)

