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Abstract - Pervasive computing is an emerging computing paradigm 
that provides intelligent context-aware applications. Such 
applications handle contextual information in order to determine 
the current user’s situation. Contextual information is typically 
inaccurate (e.g., noise of sensor readings). A novel context fusion 
engine* that models, determines and reasons about the current 
user’s situation is proposed. This engine, based on Dynamic 
Bayesian Networks and Fuzzy Logic, deals with the reliability of 
sources and approximate contextual reasoning. 
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I. INTRODUCTION 

Pervasive computing is emerging as the future computing 
paradigm in which infrastructure and services are seamlessly 
available anywhere and anytime. Pervasive computing applications 
require support for managing imprecise context. In such 
applications, observations are recorded from a number of sensors. 
The context estimation is characterized by imprecise knowledge, 
e.g. missing information and unreliability of sources. The method 
of deriving high-level understanding from low-level, inaccurate 
sensor data is called context fusion.  

Several methods have been proposed to deal with imprecise 
contextual information [1]. Approximate reasoning produces 
knowledge about the user’s situation. The different kinds of 
imperfection can be handled through Fuzzy Logic (FL) [2]. 
However, FL is based on specific degrees of uncertainty and 
vagueness at context determination. Allowing a degree of fuzziness 
not only at the situation determination phase but also at decision 
making (e.g., triggering of several actions), context-aware 
applications become more robust and flexible. 

In this paper, a probabilistic context fusion through FL is 
proposed. Specifically, context fusion is based not only on the joint 
probability over sensor data but, also, on the reliability of sources 
deployed on the environment. This means that, during the fusion 
process, a degree of confidence over the sensed / retrieved context is 
taken into consideration enabling more accurately reasoning about 
the current situation of a user (e.g. location, actions).  

The paper is organized as follows: in Section II the terms context 
and confidence are defined, while Section III discusses the 
probabilistic context fusion based on Dynamic Bayesian Networks 
(DBNs). In Section IV, the reliability of sources is incorporated 
through FL in the fusion process, and in Section V, the proposed 
mechanism is evaluated with real context data. Section VI discusses 
related work and, finally, Section VII concludes the paper.         

II. CONTEXT MODEL 

A. Context Definition  
                                                 
* This work was performed in the context of the "PENED" Programme, co-
funded by the EU and GSRT (research grant 03ED173). 
 
 

A well-known definition of context in [3] defines that “context is 
any information that can be used to characterize the situation of an 
entity. An entity is a person, place or object that is considered 
relevant to the integration between a user and an application, 
including the user and the application themselves”. Our approach 
in context modeling is illustrated by the following definition of 
contextual attribute and situation. 

Definition 1. Let the finite set A(k) of contextual attributes a of 
description level k, k ≥ 0. Such attributes constitute the context of 
k-level. A level of 0 (k = 0), denotes a non-inferential context (e.g., 
sensor readings). An attribute a is instantiated with a value u when 
referring to the proposition “a is u”. Situation or situational context 
is defined as the k-level attribute p ∈ A(k) with k ≥ 1.  

Situation is derived from a synthesis of attributes belonging to 
sets of mi-levels with mi < k. Such synthesis is a logical 
aggregation (∧) of n propositions “ai is ui”, i = 1,…,n. Specifically, 
a situation is the implication of conjunctive propositions that hold 
at a specific time and is represented by a rule of k-level, as in (1). 
The v value in (1) belongs to the domain set of all considered 
situational contexts.  

(a1 is u1) ∧ … ∧ (an is un) → (p is v)      (1) 

where ai ∈ A(mi), p ∈ A(k), k = (maxi(mi) + 1), i = 1,…,n. We 
refer to “ai is ui” as the antecedent-part and to “p is v” as the 
consequent-part. In such model, if all observations ui are assumed 
to be reliable then, we can extend the reading of “ai is ui” to “ai is 
ui and the observation of ui is reliablei”. Fig. 1 illustrates the 
reasoning structure of the observed values that determine a 
situation.  

Definition 2. Dimension d(p) of the k-level situation p is defined 
as the number of attributes that conclude and determine p. Hence, 
d(p) = n if p is the consequent of a k-level rule with n antecedents. 
By definition,(d(p) ≥ d(q) ⇔ ((p ∈ A(k)) ∧ (q ∈ A(m)) ∧ (A(k) ⊇ 
A(m)) ∧ (k ≥ m)), which means that situation p is more specific 
than situation q, annotated as p → q.  
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Fig. 1. Structure of situational context determination 

L. Zadeh in [2] defines the fuzzy set theory as an extension of 
the set theory. Non-fuzzy sets only allow full membership or no 
membership at all, where fuzzy sets allow partial membership. In 
other words, an element u ∈ U may partially belong to a set. Such 
partial membership, called degree of membership, is represented 
by a membership function μ which takes values from 0 to 1, i.e., μ: 
U → [0,1]. Moreover, a fuzzy set A is defined as the set of pairs 
(membership degree, element), that is A = {(μ(u), u) | u ∈ U}. The 



knowledge of the context value cannot be assessed precisely in a 
quantitative form. Instead, it may be assessed in a qualitative way. 
Hence, the use of a linguistic approach is deemed appropriate. 
Context may be un-quantifiable due to its nature, and may be 
stated in linguistic terms (low temperature, high sound and natural 
light).  
B. Reliability of Sources and Context Confidence  

Sensors are often inaccurate and it is important to incorporate 
accuracy estimation in the situational context reasoning. 
Knowledge about sensors accuracy can be obtained by various 
means, e.g. manufacturer’s specifications, operating time, 
confidence/reliability calculation techniques. In order to estimate 
how confident we are on sensing a value, we define the source 
reliability degree for each source. Specifically, this quantity 
associates a degree of reliability, h, to each of the Si sources in S = 
{S1,…,SN} i = 1,…,N. The h indicator is defined as follows: 

h: S → [0, 1] (2) 

Consider the value ui of the ai attribute that corresponds to the 
source Si ∈ S, i = 1,…,N. Then, confidence conf for the values that 
infer the k-level situation p is calculated as follows: 
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minimum degrees derived from the h reliability of each pair of 
sources. For instance, for S = {S1, S2, S3} with reliability values 
(0.2, 0.4, 0.8), respectively, the confidence value is max {min(0.2, 
0.4), min(0.2, 0.8), min(0.4, 0.8)} = 0.4. According to the 
Certainty Factor theory [4], the analogous confidence value for the 
and-aggregation of the antecedents is the NiSh ii
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The k-level rule that concludes a situation p and takes into 
consideration the reliability of the sources is defined as follows:    

         [(a1 is u1) ∧ conf1] ∧ .. ∧ [(an is un) ∧ confi] → (p is v)   (4) 

where confi is the confidence on the observation or conclusion of 
the value ui of the context attribute ai. If ai ∈ A(0) then, confi is the 
reliability hi of the source ai, Hence, the confidence on the value v 
of the concluded situation p is calculated by (3), given that the 
confidence values confi, i=1,…,n, of the ai antecedents of the p 
situation have been estimated.   

III. PROBABILISTIC FUSION  

We adopt the probabilistic fusion from [5], which is based on 
Dynamic Bayesian Networks (DBN). A DBN extends the static 
Bayesian Network (BN) by modeling changes of random variables 
over time. Random variables in a DBN are affected by variables 
from previous time slots. Details about BNs can be found on [10]. 
A. DBN Integration in Context Fusion Engine  

The random variables of the DBN are (i) attributes a ∈ A(0) 
(i.e., sensor readings) and, (ii) situations p ∈ A(k) with k ≥ 1. A 
situation p ∈ A(k) can affect (i) a situation q ∈ A(m) with m<k and 
(ii) an attribute a ∈ A(0) at the same time (Fig. 2). For each sensor 
Si ∈ S (or ai), i = 0,…,N, we estimate the probability distribution 

P(ai is ui | pj is vj), pj ∈ A(k), k ≥ 1. Throughout the paper we refer 
to the previous expression with the type P(ai | pj). Moreover, for 
every non-root situation (situation without parent nodes), we 
determine the probability distribution P(qi | pj), i = 1,…,d(pj), with 
qi ∈ A(k), pj ∈ A(m), k ≥ 1 and m > k. 
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Fig. 2. DBN representing the dependencies between random variables 
(situations / attributes) at different time slots 

B.  Fusion Operator 
The calculation of the conditional probability of situational 

contexts determines accurately the value of the situation at time t 
i.e., p = p(t), p ∈ A(k), as follows: 

))(),...,(),(),‐(|)(( ‐‐ tatatatqtpP kk 0211  (5) 

where q ∈ A(k), ai ∈ A(i) with i = 0,..k-1. Equation (5) is the 
mathematical representation of the probabilistic fusion and denotes 
the probability of a situation at time t given the previous (i.e., at t -
1 time) value of the situation and given the values of its 
dependable situations and attributes at time t of lower levels. The 
problem of inference (fusion) is to find the situation p(t) that 
maximizes the joint probability, that is: 
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where Nk is the number of situations of k-level. Hence, P(p(t)) is 
the probability value of the occurrence of p(t)  situation and we call 
such inference probabilistic fusion.  

IV. PROBABILISTIC FUSION WITH CONFIDENCE 

Let p be the situation derived from the probabilistic fusion in (6). 
Such probabilistic fusion determines p regardless of the reliability 
of the contributing sources. However, P(p(t)) = P(p) has to be 
estimated with a certain degree of confidence on sensor readings. 
Consider the fact that the fusion results to a high value of 
probability P(p) but with a low confidence confp on the sources. 
This could lead to a non-valid determination on the occurrence of p 
situation. Hence, P(p) probability has to be re-evaluated taking into 
account the reliability of sensor readings. Such reasoning can be 
dealt with imprecise inference by characterizing the values of P(p) 
and confp with fuzzy sets. However, the proposed system has to 
combine P(p) and confp in an approximate reasoning manner 
through fuzzy inference rules, as discussed later. 

The scheme for inferring a k-level situation in (4) is written in 
the modus ponens form illustrated in Fig. 3. The observations u*

i, i 
= 1,…,N, are combined with the corresponding confidence values 
confi. The concluded value v* for the p situation relates to the 
possibility of occurrence P*(p) (confidence probability) of p taking 
into account the joint probability P(p) and the confidence value of 
each antecedent confi , i = 1,…,N. Actually, confi relates to fuzzy 
sets that describes the confidence on the ui value. 
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Fig. 3. Reasoning structure for fuzzy probabilistic reasoning 

 
Three fuzzy sets Al characterize P(p) for each probability value 

through a set of linguistic terms l ∈ {high, medium, low}. A low 
P(p) denotes that the system believes that, the concluded situation 
derives from a low probability of observation while, a high P(p) 
denotes that the system assigns a high confidence on the p 
observation. A medium P(p) denotes that the system is not 
sufficiently certain or uncertain about the observation of p. 
Similarly, two fuzzy sets Cl characterize the confidence values conf  
through a set of linguistic terms l ∈ {high, low}. A low conf 
denotes that the result (p) is computed with a low confidence i.e., 
low reliability of sources. High conf indicates that p is derived 
from highly reliable sources. An approximate reasoning based on 
Fuzzy Logic over such quantities produces a more holistic and 
elaborated P*(p) value. 

A fuzzy implication F is a map ⇒ : [0,1]×[0,1] →[0,1] of the 
form x ⇒ y ≡ ¬x ∨ y, where ∨ is a t-conorm (e.g., the max-
operator) and ¬ is a negation (e.g., ¬x = 1-x). Hence, x ⇒ y = 
max((1-x), y). F implication is applied over the Al and Cl fuzzy sets 
and thus the improved probabilistic fuzzy value y = P*(p(t)). The F 
implication corresponds to three fuzzy sets Dl describing a low, 
medium and high confidence probability P*(p(t)), l ∈ {high, 
medium, low}. A fuzzy rule base is constructed of m FIR, m > 0. 
Each rule ri (Table I(a)) contains the Al, Cl and Dl fuzzy sets with 
their corresponding linguistic terms for P(p), confp and P*(p(t)), i = 
1,…,m. The appropriate fuzzy value of y is then represented by the 
fuzzy set Y(y) (see Table I(b)) depending on the input (P(p), confp). 
Table I(c) depicts the concluded situation based on the fuzzy 
reasoning about the sensor readings confidence and the 
probabilistic fusion.  

Table I (a) FIR, (b) the fuzzy set of the fusion, (c) the output of 
the fuzzy inference 

r1: if P(p(t)) is l1 and confp is l1 then P*(p(t)) is l1
…
rm : if P(p(t)) is lm and confp is lm then P*(p(t)) is lm  

(a) 

Y(y) = ∨1≤i≤m [Cli(P(p(t))) ∧ Ali(confp) ∧ Dli(y)]
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The fuzzy inference results to the fuzzy set Y(y), which is 
defuzzified, and the crisp value P*(p(t)) is generated. The five most 

essential FIR for reasoning about the probabilistic fusion and 
sources confidence are illustrated in Fig. 4, including 
concentration (very) and dilution (somewhat) modifiers.  

if P(p(t)) is low then y is low
if P(p(t)) is medium and confp is low then P*(p(t)) is very low
if P(p(t)) is medium and confp is high then P*(p(t)) is somewhat high
if P(p(t)) is high and confp is low then P*(p(t)) is medium
if P(p(t)) is high and confp is high then P*(p(t)) is high

Fig. 4. Fuzzy Inference Rules (FIR) 

We call such inference as fuzzy probabilistic fusion, which 
corresponds to the enhancement of the probabilistic fusion of the p 
situation produced by the equation in Table I(c).The Fuzzy 
Inference Rules (FIR), in Fig. 4, do not describe the situation in 
which the probability and the confidence of the sources are 
simultaneously low. Instead, the confidence probability (P*(p)) 
depends only on the value of the probability P(p) (the first rule). 
We exclude such rule from the proposed reasoning engine because 
another more improved reasoning formula has to be asserted (e.g., 
modus tollens logic1). 

The proposed inference scheme (Fig. 3) uses only one fuzzy 
controller at the highest level of conclusion (root situation). 
Specifically, the fuzzy probabilistic fusion is unique at the highest 
k-level i.e., v*(k). For each level m, m < k, the confidence confpi i 
=1,..,Nm, p ∈ A(m) on the values are computed according to (3), 
where Nm is the number of attributes of the m-level rule. Hence, the 
fuzzy controller applies fuzzy linguistic reasoning at level k.  

V. EXPERIMENTAL EVALUATION 

A. Experimental Setup 
The evaluation of the probabilistic fusion based on DBNs with 

fuzzy reasoning is performed using two technologies for indoor 
location estimation of a user: Wi-Fi Access Points (AP) and 
Infrared (IR) Beacons. In the following paragraphs the terms 
situation and location of the user are used interchangeably. The 
experimental setup was the 2-floor building of the Department of 
Informatics & Telecommunications (UoA, Greece). Each floor has 
dimensions of 30 X 100 meters and we used 35 symbolic locations 
L (e.g., entrance, research room, etc.). The DBN that resulted 
under the previously described setup is an instance of the DBN 
depicted in Fig. 2. During the DBN training phase, a sequence 
(number of samples-measurements) for all locations was compiled 
and fed to the system. According to the evaluation scenario a 
Personal Digital Assistant (PDA) was equipped with sensors for 
Infrared Radiation detection (IR port) and Received Signal 
Strength measurements (Wireless LAN adapter). Context values 
(sensor readings) were recorded every second. Context has the 
format “a is u”: “AP1_RSS is -60 dBm”, “IRB1 is visible”.  
B. Calculating the Reliability of Sources 

The evaluation also takes into account the reliability of sources. 
In order to quantify the reliability h for each sensor Si, we used the 
probability distributions (Table II) that derived from the training 
phase of the DBN. It is obvious that, if the number of sample 
values (measurements) of a sensor during the training phase is 
distributed equally between lower and highest value for a location 

                                                 
1 Modus ponens implies the following statement: ((p → q ∧ p) → q), whilst 
modus tollens implies: ((p → q ∧ ¬q) → ¬p) 



L, the probabilities in the distribution (for the specific location) 
would be also equally distributed. The condition of equally 
distributed probabilities does not offer any “real” information from 
the sensor as every value v has the same (approximately) 
probability to appear. In order to obtain better results in location 
estimation, the samples should not be equally distributed.  

Table II. Probability distribution for the sensor AP1 

 L1  L2 … 
v1 0.5 0.0 … 
v2 0.3 0.8 … 
v3 0.1 0.2 … 
… … … … 

Let V(Li) be the discrete random variable which takes values 
from the column Li of a probability distribution table. When the 
probability for a location (column) is equally distributed to all 
sensed values i.e., V(Li) = 1/k, with i = 1,…,M and k is the number 
of the sensed values (i.e. number of rows of a probability 
distribution table), this means absolute ignorance on the sensed 
values. Hence, the higher the variance σ2 of the random variable 
V(Li) the more information we obtain from that sensor for the 
specific location Li (i.e., the sensor readings appear more reliable). 
By calculating the mean value of all variances for every location 
we obtain a “global” reliability h for this sensor as shown in (7).  

∑
=

=
M

i
iLVβ

M
h

1

1 )]([Var*  (7) 

where M is the number of symbolic locations and β is a 
normalizing constant since h ∈ [0,1]. IR Beacons appear more 
reliable on location estimation than WLAN APs. Intuitively, 
this is considered correct as IR Beacons have shorter range of 
emission thus improving the accuracy of the estimated location. 
 C. The Behavior of the Fuzzy Probabilistic Fusion 

The system computes the probabilities for each situation 
(location) and the estimated location of the user is the location with 
the maximum confidence probability. Fig. 5 illustrates the 
confidence probability for the fusion techniques (i) probabilistic 
fusion using static BNs, (ii) probabilistic fusion using DBNs and 
(iii) fuzzy probabilistic fusion using DBNs. In the first case we do 
not take into consideration the previous location of the user for the 
estimation. The mean value of confidence probability is 73%. 
Through the use of DBNs the mean value of probability increased 
to 85%. Finally, in the third case, where the reliability of sources is 
taken into account, the confidence probability reaches to 91%. 
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Fig. 5. Mean confidence probability of the system 

Obviously, the confidence probability based on the reliability of 
sources assumes better values i.e., the system is sufficiently certain 
in order to determine a situation context. It should be noted that, 
the fuzzy probabilistic fusion assumes better performance when the 

probability is close to 0.5. (i.e., the system is not sufficiently 
certain about the inferred situation).  

VI. RELATED WORK 

There are many pervasive computing systems that use sensors 
readings and fusion techniques. Specifically, Location Stack [6] 
employs such techniques for positioning. The inability of 
supporting mobile devices with limited capabilities and the 
location, only, estimation are of the main drawbacks. The location 
estimation discussed in [5] based on DBN utilizes data from 
sensors of different technologies to infer user location. But, 
context-awareness is not only location estimation and spatial 
awareness. Many situational context models [7] appear in the 
situation awareness literature. Certain models are capable of 
reasoning about situational context knowledge [8]. Significant 
work in [9] deals with situational context recognition through data 
fusion techniques.  

VII. CONCLUSIONS AND FURTHER WORK 

In this paper we presented a novel context fusion engine, which 
exploits data from sensors or lower level contextual information in 
order to estimate the current user situation. A set of fuzzy inference 
rules are adopted in order to reason about a more elaborated fusion 
result based on reliability of sources. An experimental evaluation 
of the engine proved its capability for situational context inference. 
In addition, a method for calculating the reliability of sources was 
introduced. Besides context representation, fusion, and reasoning, 
the need for adaptive intelligent applications is extremely 
important in PCEs. A system that infers multiple simultaneous 
situational contexts from fusion of diverse contexts is very 
important. Finally, a fuzzy representation of the context attributes, 
the adoption of the Generalized BNs (not crisp variables) and the 
integration of additional information to the estimation of the sensor 
reliability h are future research topics. 
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